
Qualität ist kein Zufall*

*Qualidade não vem por acaso

Alain Fagot Béarez

A new industry

• The software business is still so new that it has
not yet come to maturity as an industry.

• Other industries mastered the production
process creating higher quality products.

• Where is the production line when you
produce one thing only one time?

• How do you ensure quality when one
product is as different from the next as a
television is different from a refrigerator?

Software production line

• The software production line exists in the
transition of raw ideas into software products.

• Producing software does not require a
traditional rigid production line but a
sophisticated and flexible framework.

Software development
processes

• The problems with various software
development processes and with certain
quality control methods are threefold:
– they are costly to implement,
– they create vast amounts of documentation

to simply certify that a company follows a
written procedure for writing software,

– they require enormous amounts of human
labour to maintain and verify.

Quality control certification

• The processes do not guarantee that the end
product is error free.

• Only that the human elements involved in the
process are regulated in the hopes of
reducing inefficiency.

The ultimate generic goal

• In CMMI for Development, the ultimate
generic goal is the “optimizing process”.
– “Process improvements that address common

causes of process variation, root causes of
defects, and other problems; and those that
would measurably improve the organization's
processes are identified, evaluated, and
deployed as appropriate.”

Methodology for
Error Prevention

• Automated Defect
Prevention: Best
Practices in Software
Management

• Dorota Huizinga,
Adam Kolawa

• ISBN: 978-0-470-04212-0
• September 2007, Wiley-

IEEE Computer Society
Press

Elements of Error Prevention

• Coding Style
– Coding Standards
– Design by Contract
– Defensive

Programming
– Code Reviews

• Test Infection
– Unit Testing
– Regression Testing
– Load Testing

• Infrastructure Systems
– Source Control

Systems
– Automated Nightly

Builds
– Bug Tracking

Systems
– Monitoring

Automation of
Error Prevention

• Manually implementing these software
development techniques does little to ensure
their effectiveness.

• The automation of error prevention can solve
the problem of quality in the software
industry.

• Automatic error prevention tools in the
software industry must be more sophisticated
than their traditional production line
counterparts.

Effectiveness of
Error Prevention

• Effective automatic error prevention tools
must adapt to any number of test subjects,
and they must do so without human
intervention.

• The difficulty in building automatic error
prevention tools may explain why quality has
historically been absent from the software
creation process.

Culture for Error Prevention

• Code is the group’s greatest asset because it
is the main thing that they have to show for
all of their work. It also serves as means of
communication: developers exchange the
majority of their ideas by reading and writing
code.

• Build a culture where the developers' attitude
towards the code reflects the code's
importance. This prevents group members
from doing anything that harms code quality.

Group Culture for Quality

• Where group members feel a strong
investment in code quality, any developer
who does not care about the code will
alienate himself from the group.

• The point of egoless programming is that the
group owns the code, and each developer
takes responsibility for the code, but each
developer should not take criticism of the
code he wrote as a personal attack.

Automated Error Prevention
in one picture

Automated Error Prevention

• Source Control
System

• Bug Tracking System
• Web Application

Staging Area
• Connectivity

Verification
• Monitoring
• Data Pollution

Identification

• Automated Builds
• Software Coding

Standards
• Accessibility Testing
• Performance and

Stress Testing
• Unit Testing
• Regression Testing
• Coverage Analysis
• Confidence Factors

Automated Builds

• Build an application
at least every night.

• Run all available test
cases and report any
failures that occur.

• Ensure that the
application
continues to run as
expected.

http://www-128.ibm.com/developerworks/java/
library/j-ap09056/index.html

• Ant
• Maven
• Continuum
• CruiseControl
• LuntBuild
• Hudson

Software Coding Standards

• Reduce the
probability of
introducing errors
into your
applications.

• Ensure uniform
coding practices,
reducing oversight
errors and the time
spent in code
reviews.

• CheckStyle
• FindBugs
• PMD
• Hammurapi
• Enerjy

Accessibility Testing

• Ensure that a Web
application is
accessible to people
with disabilities.

• Access your
application with
screen readers,
refreshable Braille
displays, and
alternative input
devices.

• NSGMLS
• http://validator.w3.

org/check/referer

• http://jigsaw.w3.org/
css-validator/check/
referer

• http://www.w3.org/WAI
/WCAG1AA-Conformance

Performance and Stress
Testing

• Determine what
problems, in addition
to slow load times
and rates, might
occur in different
situations.

• Perform stress testing
from different
locations inside and
outside the network.

• JUnitPerf
• JMeter
• Eclipse TPTP
• NetBeans Profiler
• The Grinder
• JCrawler

Unit Testing

• Isolate and test the
structure and
function of individual
units to resolve and
prevent errors.

• Test not only the
functionality, but
also to ensure that
the code is
structurally sound
and robust.

• JUnit
• DBUnit
• Cactus
• TestNG
• EasyMock
• jMock

Regression Testing

• Run all existing test
cases and verify that
all test cases pass.

• Ensure that
modifications did not
introduce new errors
into code.

• Check whether
modifications
eliminated existing
errors.

• JUnit
• JMeter
• Jameleon
• Selenium
• Sahi

Coverage Analysis

• Coverage is typically
measured either as
– line coverage,
– branch coverage,
– or path coverage.

• Can be used
– to monitor current

coverage,
– to increase

coverage.

• Cobertura
• EMMA
• CodeCover

Confidence Factors

• Determine how successful your tests have
been in analysing a project.

• Understand what types of tests may still need
to be conducted.

• See an increase in all statistics of the
confidence factors as the project matures.

Tooling for Automated
Error Prevention

CheckStyle
FindBugs

PMD
Hammurapi

NSGMLS
W3C online checkers

JUnit
JMeter

Jameleon
Selenium

Sahi
Cobertura

EMMA
Code Cover

Ant
Maven

Continuum
CruiseControl

LuntBuild
Hudson

JUnit
DBUnit
Cactus
TestNG

EasyMock
jMock

JUnitPerf
JMeter

Eclipse TPTP
NetBeans Profiler

The Grinder
JCrawler

Una experiencia española

• Source Control
System
– CVS
– SVN

• Bug Tracking System
– none

• Web Application
Staging Area
– private
– shared

• Connectivity
Verification
– none

• Monitoring
– none

• Data Pollution
Identification
– none

Una experiencia española

• Automated Builds
– Ant

• Software Coding
Standards
– CheckStyle
– Hammurapi

• Accessibility Testing
– none

• Performance and
Stress Testing
– JMeter

• Unit Testing
– JUnit
– DBUnit

• Coverage Analysis
– none

CheckStyle
FindBugs

PMD
Hammurapi

NSGMLS
W3C online checkers

JUnit
JMeter

Jameleon
Selenium

Sahi
Cobertura

EMMA
Code Cover

Ant
Maven

Continuum
CruiseControl

LuntBuild
Hudson

JUnit
DBUnit
Cactus
TestNG

EasyMock
jMock

JUnitPerf
JMeter

Eclipse TPTP
NetBeans Profiler

The Grinder
JCrawler

Meu próximo ambiente?

Perguntas?

Questions?

Vragen?

Fragen? Demandoj?

¿Preguntas?

Preguntes?

Obrigado!

Merci!

Thank you! Bedankt!

Danke schön!

Dankon!

¡Gracias!

